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ABSTRACT

The purpose of this study is to use the PERSIANN–Climate Data Record (PERSIANN-CDR) dataset to

evaluate the ability of 32 CMIP5 models in capturing the behavior of daily extreme precipitation estimates

globally. The daily long-term historical global PERSIANN-CDR allows for a global investigation of eight

precipitation indices that is unattainable with other datasets. Quantitative comparisons against CPC daily

gauge; GPCP One-Degree Daily (GPCP1DD); and TRMM 3B42, version 7 (3B42V7), datasets show the

credibility of PERSIANN-CDR to be used as the reference data for global evaluation of CMIP5models. This

work uniquely defines different study regions by partitioning global land areas into 25 groups based on

continent and climate zone type. Results show that model performance in warm temperate and equatorial

regions in capturing daily extreme precipitation behavior is largely mixed in terms of index RMSE and

correlation, suggesting that these regions may benefit from weighted model averaging schemes or model

selection as opposed to simple model averaging. The three driest climate regions (snow, polar, and arid)

exhibit high correlations and low RMSE values when compared against PERSIANN-CDR estimates, with

the exceptions of the cold regions showing an inability to capture the 95th and 99th percentile annual total

precipitation characteristics. A comprehensive assessment of each model’s performance in each continent–

climate zone defined group is provided as a guide for both model developers to target regions and processes

that are not yet fully captured in certain climate types, and for climate model output users to be able to select

the models and/or the study areas that may best fit their applications of interest.

1. Introduction

Precipitation is one of the key elements for hydro-

logical and climate studies. Atmosphere–ocean general

circulationmodels (GCMs) are themost important tools

for simulating the current state of the climate and pro-

jecting future changes for precipitation under different

scenarios of greenhouse gas emissions (Jiang et al. 2012).

With climate models being developed by different

groups around the world, with different built-in

assumptions, it comes as no surprise when there is a

lack of correspondence between model projections of

precipitation. Gaetani and Mohino (2013) assessed the

capability of different models from phase 5 of the

Coupled Model Intercomparison Project in predicting

precipitation and found that predictive skills of CMIP5

precipitation simulations are highly model dependent.

Therefore, it has been difficult to quantify what

precipitation changes should be expected, given that

disagreement among climate model projections is wide-

spread (Neelin et al. 2006). A common remedy for such

disagreement in model-produced precipitation is to sim-

ply employ the mean model, which considers all models

equal. While this method has shown merit, particularly

for global-scale studies evaluating the mean climate

(Reichler and Kim 2008), the question remains as to

whether this type of strategy can offer any insight into

further understanding of the climate system, particularly

in the scope of enhanced development of the climate

models themselves to represent it. By identifying the in-

dividual climate models that perform well for a given re-

gion, one can begin to examine what aspects/assumptions

those superior models have that less superior models do

not. This notion loosely supports the development of aCorresponding author: Phu Nguyen, ndphu@uci.edu
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model hierarchy for climatemodeling suggested byHeld

(2005) by providing a basis for evaluating how much

complexity may be needed to capture processes unique

to various climate regions. Based on results shown

here, a weighted mean might be a better approach for

certain precipitation extremes. The weights can be

based on the performance by the models for a particular

index. Models that perform better get more weight than

models that perform poorly.

With the release of the CMIP5 results (Taylor et al.

2012), researchers have conducted many studies. To

evaluate the CMIP5 models’ precipitation simulations,

the reference data should be reliable. Rain gauge and

radar observations are traditionally used as the refer-

ence datasets for evaluation. However, they are often

sparse and inadequate to capture the spatial and tem-

poral variability of precipitation systems (Miao et al.

2015). The current era of satellite-based precipitation

estimates has made a great difference in detecting

rainfall distribution and has been complementary to

conventional rain and radar measurements. There are

various high-resolution satellite precipitation products

available, including the Tropical Rainfall Measuring

Mission (TRMM) 3B42, version 7 (3B42V7; Huffman

et al. 2007), and the Climate Prediction Center (CPC)

morphing technique (CMORPH; Joyce et al. 2004).

However, at least 30 years of historical weather data

are required for long-term climatological studies

(Burroughs 2003). It is essential to explore satellite-

based precipitation products that can provide full

global coverage at relatively high temporal and spatial

resolutions suitable for daily precipitation extremes and

long-term climate studies (e.g., Bosilovich et al. 2008;

Peterson et al. 2012; Rossow et al. 2013; Wuebbles et al.

2014; Ashouri et al. 2016b). For example, the Global

Precipitation Climatology Project (GPCP) data (1979–

present; Adler et al. 2003), which merge the highest-

quality satellite and gauge estimates, have been widely

used as the reference data to evaluate the CMIP5

models for precipitation (Liu et al. 2014; Mehran

et al. 2014).

Mehran et al. (2014) utilized the GPCP as the refer-

ence dataset to cross validate CMIP5 historical simula-

tions of precipitation over land. However, the relatively

coarse spatial and temporal resolution of GPCP

precipitation datasets (2.58 latitude 3 2.58 longitude;

monthly) limits its application for higher-resolution

studies, especially at a scale relevant to extreme

events. Sillmann et al. (2013) compared global extreme

precipitation indices from CMIP5 models with those

from theHadley CentreGlobal Climate Extremes Index

2 (HadEX2) observational precipitation dataset. They

concluded that CMIP5 models were generally able to

simulate precipitation extremes. Sillmann et al. (2013)

also pointed out that the spatial coverage of the

HadEX2 dataset (2.58 latitude3 3.758 longitude) is ‘‘far
less than ideal.’’ The results from this work were in-

cluded in the IPCCFifthAssessmentReport (Flato et al.

2013; IPCC 2013).

Precipitation Estimation from Remotely Sensed In-

formation Using Artificial Neural Networks–Climate Data

Record (PERSIANN-CDR) is a new retrospective

satellite-based precipitation dataset intended for various

applications requiring long-term, near-global coverage and

high-resolution data including climate model evaluations

and studies (Ashouri et al. 2015). PERSIANN-CDR pro-

vides the opportunity to evaluate the behavior of daily

extreme precipitation patterns of CMIP5 models on a

global scale and at a higher resolution over the past

three decades. In this research, we aim to evaluate the

capability of CMIP5 models in capturing the behavior of

daily extreme precipitation estimates based on the daily

PERSIANN-CDR dataset. Different from the other

global evaluation works about CMIP5 models for pre-

cipitation, this study examines the performance of

CMIP5 models over different continent–climate zone

(CCZ) groups. This unique dataset not only enables

users of climatemodel output to leverage the strengths of

the top-performing models, but also allows climate

model developers to get a more complete picture of how

each model performs in a specific environment.

The remainder of this paper is organized as follows:

the PERSIANN-CDR and CMIP5 models are briefly

introduced in section 2; the methodology and results are

presented in sections 3 and 4, respectively; and the

conclusions and discussions are documented in section 5.

2. Datasets

PERSIANN-CDR is a new retrospective satellite-based

precipitation dataset for long-term global climate studies

(Ashouri et al. 2015). This dataset was developed under

NOAA’s Climate Data Record (CDR) initiative.

PERSIANN-CDR provides near-global (608S–608N)

daily precipitation estimates at 0.258 spatial resolution
from 1 January 1983 to the present (http://chrsdata.

eng.uci.edu). PERSIANN-CDR uses the existing

PERSIANN algorithm (Hsu et al. 1997; Sorooshian

et al. 2000) as its backbone model. In PERSIANN-

CDR, in order to eliminate the need for passive

microwave (PMW) observations, the nonlinear re-

gression parameters of the neural network (NN)

model are trained, using the National Centers for

Environmental Prediction (NCEP) stage IV radar

data, and kept fixed for the retrospective estimation of

rainfall rates. The model then uses the archive of the
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Gridded Satellite brightness temperature observa-

tions (GridSat-B1; Knapp 2008) to estimate surface

rainfall rate at 0.258 3 0.258 pixels. To reduce the

biases in the PERSIANN-estimated precipitation

while preserving the spatial and temporal patterns in

high resolution, 2.58monthly GPCP precipitation data

are utilized.

PERSIANN-CDR, even though a newly released

dataset, is being rapidly adopted for use in different

studies (e.g., Guo et al. 2015; Luchetti et al. 2016;

Nguyen et al. 2017; Katiraie-Boroujerdy et al. 2017).

Miao et al. (2015) evaluated PERSIANN-CDR’s

capability in reproducing the behavior of daily extreme

precipitation events over China. When compared with

the gauge-based East Asia (EA; Xie et al. 2007) data-

set, PERSIANN-CDR showed similar spatial and

temporal patterns of daily precipitation extremes,

particularly in areas where the intensity and frequency

of extreme precipitation were very high. Overall,

PERSIANN-CDR showed slight underestimation of

the magnitude of the daily extreme rainfall. Ashouri

et al. (2016a) evaluated the efficacy of PERSIANN-

CDR’s precipitation and simulated streamflow over

three test basins in the Distributed Hydrologic Model

Intercomparison Project, phase 2 (DMIP2). The results

showed close performance between PERSIANN-CDR

and TRMM Multisatellite Precipitation Analysis

(TMPA) when compared to stage IV radar data. Sim-

ilar performances were observed when comparing

the PERSIANN-CDR–derived and TMPA-derived

streamflow with USGS streamflow observations.

PERSIANN-CDR was then used to simulate historical

streamflow starting from 1 January 1983 where only

PERSIANN-CDR daily data are available. The re-

sults showed relatively high correlation coefficients

(;0.67–0.73), low biases (;5%–12%), and high in-

dex of agreement criterion (;0.68–0.83) between

PERSIANN-CDR–simulated daily streamflow and

USGS daily observations during 1983–2012. Casse

and Gosset (2015) used PERSIANN-CDR satellite

rainfall estimates to analyze hydrological changes and

flood increase in a watershed in Niger for the period of

1983–2013. The result of this study showed that

PERSIANN-CDR depicts comparable annual rainfall

amount similar to those of gauge-adjusted satellite

rainfall estimates [TRMM 3B42V7; African Rainfall

Estimation Algorithm, version 2 (RFE2)] and gauge

product (CPC). Casse and Gosset (2015) also stated

that ‘‘PERSIANN-CDR based hydrological simulation

presents a realistic inter-annual variability, and detects

flooded years, but not the exact flooded period day

by day.’’ In another study by Yang et al. (2016),

PERSIANN-CDR and three other widely utilized

satellite precipitation products were evaluated against

rain gauge observations over a river basin in central-

eastern China. TRMM 3B42V7 and PERSIANN-CDR

showed reasonable performance, and themonthly gauge

adjustment applied to these two products significantly

reduced their systematic biases. Tan et al. (2015) used

rain gauge data to evaluate the performance of different

high-resolution precipitation data and ground-based

precipitation products over Malaysia. The results

show slight overestimation of observed precipitation by

TRMM 3B42, real time (3B42RT); TRMM 3B42V7;

and PERSIANN-CDR by 2%, 4.7%, and 2.1%, re-

spectively. On the contrary, the study reports underesti-

mation of observed precipitation by APHRODITE and

CMORPH by 19.7% and 13.2%, respectively. Solmon

et al. (2015) used PERSIANN-CDR for 2000–09 pre-

cipitation trend calculation over southern India. Given

these studies, while there is still room for further evalu-

ation of PERSIANN-CDR for different applications

over different parts of the world, PERSIANN-CDR has

shown its usefulness and acceptable accuracy for being

used in different studies, including model testing.

Therefore, in this study, the daily PERSIANN-CDR es-

timates are used as the reference data for evaluation of

climate models’ simulations during the overlapping pe-

riod between PERSIANN-CDR and historical simula-

tions of CMIP5 models (1983–2005). Though extreme

precipitation may be expected to change in response

to forced climate change (because of, for example, ther-

modynamical Clausius–Clapeyron scaling, dynamical

changes, and microphysics changes), the year-to-year

variability due to weather (noise in the CMIP5 histori-

cal experiment) is expected to be bigger on short time

scales (i.e., 23 years in this study). For the United States,

this was shown to be true in an ensemble of model ex-

periments and based on different observational data es-

timates (van der Wiel et al. 2016).

PERSIANN-CDR 0.258 precipitation data are aggre-

gated into 18 resolution using the bilinear interpola-

tion method. To preserve the global rain total and

minimize the effect from no-data pixels, the original

PERSIANN-CDR images are regridded into 10 times

smaller resolution (0.0258) before the bilinear interpo-

lation process.

Regarding the regional classification method, it is

worth noting that Köppen–Geiger classifications were

used to define boundaries of study regions in this study

(as further described in the following section), and these

classifications are based on temperature and pre-

cipitation observations rather than geographical loca-

tion. Therefore, although there are regions classified as

‘‘polar,’’ they are not physically located at the poles

where PERSIANN-CDR does not provide estimates.
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Daily precipitation simulations by the 32 CMIP5

models, listed in Table 1, for the historical period

1983–2005 are processed for model evaluation. The

precipitation simulations of the models in Table 1 are

regridded into 18 3 18 global grids using the same bi-

linear interpolation method as for PERSIANN-CDR

for comparison, with the focus on global land areas

between 608S and 608N.

As previously discussed, various studies have utilized

PERSIANN-CDR, for different applications, in which

PERSIANN-CDRhas shown its usefulness. In this study,

before getting into the details of using PERSIANN-CDR

for evaluating CMIP5 climate models on capturing the

behavior of daily extremes, we compared PERSIANN-

CDR performance against CPC daily gauge analysis, as

well as GPCP One-Degree Daily (GPCP1DD; Huffman

TABLE 1. CMIP5 models used for analysis in this study. Horizontal resolution is given in longitude a (3608) and latitude b (1808).

No. Model Institute Resolution (a 3 b)

1 BNU-ESM College of Global Change and Earth System Science, Beijing Normal University 128 3 64

2 CCSM4 National Center for Atmospheric Research 288 3 192

3 CESM1(BGC) National Science Foundation, Department of Energy, National Center

for Atmospheric Research

288 3 192

4 CESM1(CAM5) National Science Foundation, Department of Energy, National Center

for Atmospheric Research

288 3 192

5 CMCC-CESM Centro Euro-Mediterraneo per i Cambiamenti Climatici 96 3 48

6 CMCC-CM Centro Euro-Mediterraneo per i Cambiamenti Climatici 480 3 240

7 CMCC-CMS Centro Euro-Mediterraneo per i Cambiamenti Climatici 192 3 96

8 CNRM-CM5 Centre National de Recherches Météorologiques/Centre Européen de

Recherche et de Formation Avancée en Calcul Scientifique

256 3 128

9 CSIRO Mk3.6.0 Commonwealth Scientific and Industrial Research Organisation in

collaboration with the Queensland Climate Change Centre of Excellence

192 3 96

10 CanESM2 Canadian Centre for Climate Modelling and Analysis 128 3 64

11 EC-EARTH EC-Earth Consortium 320 3 160

12 FGOALS-g2 State Key Laboratory of Numerical Modeling for Atmospheric Sciences and

Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese

Academy of Sciences; and Center for Earth System Science,

Tsinghua University

128 3 108

13 GFDL CM3 Geophysical Fluid Dynamics Laboratory 144 3 90

14 GFDL-ESM2G Geophysical Fluid Dynamics Laboratory 144 3 90

15 GFDL-ESM2M Geophysical Fluid Dynamics Laboratory 144 3 90

16 GISS-E2-H NASA Goddard Institute for Space Studies 144 3 90

17 GISS-E2-R NASA Goddard Institute for Space Studies 144 3 90

18 HadCM3 Met Office Hadley Centre 96 3 73

19 HadGEM2-ES Met Office Hadley Centre 192 3 145

20 IPSL-CM5A-LR L’Institut Pierre-Simon Laplace 96 3 96

21 IPSL-CM5A-MR L’Institut Pierre-Simon Laplace 144 3 143

22 MIROC-ESM-CHEM Japan Agency for Marine-Earth Science and Technology, Atmosphere and

Ocean Research Institute (University of Tokyo), and National Institute

for Environmental Studies

128 3 64

23 MIROC-ESM Japan Agency for Marine-Earth Science and Technology, Atmosphere and

Ocean Research Institute (University of Tokyo), and National Institute

for Environmental Studies

128 3 64

24 MIROC4h Atmosphere and Ocean Research Institute (University of Tokyo),

National Institute for Environmental Studies, and Japan Agency

for Marine-Earth Science and Technology

640 3 320

25 MIROC5 Atmosphere and Ocean Research Institute (University of Tokyo),

National Institute for Environmental Studies, and Japan Agency

for Marine-Earth Science and Technology

256 3 128

26 MPI-ESM-LR Max Planck Institute for Meteorology 192 3 96

27 MPI-ESM-MR Max Planck Institute for Meteorology 192 3 96

28 MPI-ESM-P Max Planck Institute for Meteorology 192 3 96

29 MRI-CGCM3 Meteorological Research Institute 320 3 160

30 NorESM1-M Norwegian Climate Centre 144 3 96

31 BCC_CSM1.1(m) Beijing Climate Center, China Meteorological Administration 320 3 160

32 BCC_CSM1.1 Beijing Climate Center, China Meteorological Administration 128 3 64
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et al. 2001) and TRMM3B42V7 products, in reproducing

daily extreme precipitation statistics.

For these comparisons, PERSIANN-CDR, CPC

daily gauge, GPCP1DD, and TRMM 3B42V7 datasets

are spatially upscaled into 18 3 18 grids. It is noteworthy
that although PERSIANN-CDR and GPCP1DD are

bias corrected against similar monthly satellite–rain

gauge analyses, their daily variability is different.

3. Methodology

a. Spatial divisions

Given that climate zones are primarily defined by

temperature and precipitation and two of the most

heavily evaluated variables of interest in climate

projections are also temperature and precipitation,

an assessment of global climate model performance

naturally lends itself to the division of study regions

by climate zone. This is because the performance of

an individual model within a given CCZ group is

likely to be consistently representative throughout

that particular group. A Köppen–Geiger climate

classification map (available at http://koeppen-geiger.

vu-wien.ac.at/shifts.htm) was used to define bound-

aries of global climate zones. This map was derived

using Climatic Research Unit Time Series, version 2.1

(CRU TS 2.1), for temperature and Global Pre-

cipitation Climatology Centre Full, version 2 (GPCC

Full v2), for precipitation data from 1976 to 2000

(Rubel and Kottek 2010). The 31 climate zones were

aggregated to 5 main climate zones: equatorial, arid,

warm temperate, snow, and polar, with their spatial

resolution at 18.
These climate zones were further divided by conti-

nent to at least partially account for spatial proximity.

The resulting combination of continent–climate

zone defined areas yielded 25 study regions (Fig. 1,

Table 2).

It is acknowledged that because of climate change,

the boundaries of these climate zones are destined to

change as well. In fact, this is the topic discussed by the

climate zone map developers (Rubel and Kottek 2010).

However, since the map derived from observations

from 1976 to 2000 provides substantial overlap with the

historical evaluation period used for evaluation, cou-

pled with the generalization from 31 to 5 climate zones,

the areas depicted in Fig. 1 were deemed stable enough

for this analysis. It is also acknowledged that the CCZ

groups have different sizes and some CCZ groups (e.g.,

CCZ 1, 2) are separated into several regions using the

CCZ method. Although the focus of this study is lim-

ited to grouping similar climate types for climate model

evaluation, it should be recognized that such differ-

ences in CCZ group size may have an impact on the

comparison with PERSIANN-CDR.

b. Indices and statistical metrics

To demonstrate the capability of using PERSIANN-

CDR as the ‘‘truth’’ to evaluate the performance of

CMIP5 models, the performance of PERSIANN-CDR

first should be ensured. Therefore, GPCP1DD is

employed in this study to address this issue, particu-

larly to demonstrate its capability in capturing the

behavior of daily extreme precipitation with the statis-

tical metrics used in this study. Eight daily precipitation

extreme indices were computed for PERSIANN-CDR,

GPCP1DD, TRMM3B42V7, CPCdaily gauge data, and

32 CMIP5 models at 18 3 18 grid cells. Details of the

indices are given in Table 3. Besides R10mmTOT,

seven other daily extreme precipitation indices were

selected from the recommended list by the joint Com-

mission for Climatology (CCL)/Climate and Ocean:

Variability, Predictability and Change (CLIVAR)/Joint

Technical Commission for Oceanography and Marine

Meteorology (JCOMM) Expert Team (ET) on Climate

Change Detection and Indices (ETCCDI). The pre-

cipitation indices can be classified into four groups: total

(R99pTOT, R95pTOT, R10mmTOT, and PRCPTOT),

intensity [simple daily intensity index (SDII)], fre-

quency (R10mm), and duration [consecutive wet days

(CWD) and consecutive dry days (CDD)]. The indices

are derived from daily data. For each year, the SDII is

computed by taking the sum of precipitation in wet

days (days with precipitation . 1mm) and dividing that

by the number of wet days.

To evaluate the performance of each of the CMIP5

models for each CCZ group based on PERSIANN-

CDR as ‘‘observation,’’ we calculated two commonly

used comparison metrics: correlation (CORR) and

relative root-mean-square error (RMSE). When

comparing a daily extreme index of precipitation from

FIG. 1. The 25 CCZ groups.
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each CMIP5 model with PERSIANN-CDR for a

continent–climate zone group, CORR is calculated

as follows:

CORR5
�
n

i51

(p
CMIP5,i

2 p
CMIP5

)�
n

i51

(p
CDR,i

2 p
CDR

)ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(p
CDR,i

2 p
CDR

)2

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
n

i51

(p
CMIP5,i

2 p
CMIP5

)2

s .

(1)

For each CCZ group, we define relative RMSEof a daily

extreme index of CMIP5 model k as follows:

relative RMSE
k
5

RMSE
k
2RMSE

min

RMSE
max

2RMSE
min

, (2)

where RMSEmin and RMSEmax are the minimum and

maximum RMSE values of the extreme index. RMSE is

computed as follows:

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n
�
n

i51

(p
CMIP5,i

2 p
CDR,i

)2

s
, (3)

where n is the total number of pixels in a given CCZ

group; pCMIP5,i and pCDR,i are mean extreme indices of

precipitation from the CMIP5 model and PERSIANN-

CDR for pixel i; pCMIP5 is the mean of the daily extreme

index of precipitation from the CMIP5 model; and

pCDR is the mean of the daily extreme index from

PERSIANN-CDR for the CCZ group.

4. Results

As stated earlier, we first investigate the performance

of PERSIANN-CDR against GPCP1DD. The resulting

statistics are shown in Tables 4 and 5. As shown, there

are generally high correlation coefficients and low

RMSE between PERSIANN-CDR and GPCP1DD

across all eight daily extreme precipitation indices. Most

of the correlation coefficients are close to or larger than

0.9. For a few CCZs, this agreement is not significant.

For instance, for CCZ 23 the correlation coefficient

between the two products is low (except for SDII),

which could be due to the snowy nature of precipitation

in this CCZ. This evaluation over the period that

GPCP1DD is available proves the accuracy of

PERSIANN-CDR and its usefulness to be used for

long-term validation of CMIP5 models over the past

three decades.

Similarly, we investigated how PERSIANN-CDR

compares against another high-resolution satellite-based

precipitation product, TRMM 3B42V7, from 1998 to

2005. The derived correlation coefficient and RMSE

values from this analysis are presented in Tables 6 and 7.

In almost all the CCZs (except CCZ 17), correlation

coefficients across all eight daily extreme indices are

high (0.9 6 0.1) between the two products.

At a more regional scale, we evaluated PERSIANN-

CDR’s performance against gridded gauge data analysis

over the contiguous United States (CONUS), CPC

daily gauge product, during the period of 1998–2005.

Although the CPC daily gauge analysis is compromised

TABLE 3. Evaluation precipitation indices used in the analysis. A wet day has daily precipitation $ 1mm.

Index Definition Unit

R99pTOT Annual total precipitation when daily precipitation amount on a wet day is .99th percentile mm

R95pTOT Annual total precipitation when daily precipitation amount on a wet day is .95th percentile mm

R10mmTOT Annual total precipitation when daily precipitation amount is $10mm mm

PRCPTOT Annual total precipitation in wet days mm

SDII Simple daily intensity index mmday21

R10mm Annual count of days when daily precipitation amount is $10mm days

CWD Annual max number of consecutive days when daily precipitation amount is $1mm days

CDD Annual max number of consecutive days when daily precipitation amount is ,1mm days

TABLE 2. Assigned numbers to continent and climate zone for each of 25 CCZ groups in Fig. 1. The numbers in parentheses show the area

(103 km2) of each CCZ group.

Africa Asia Australia North America Oceania South America Europe

Polar — 4 (1483) — 12 (134) — 19 (258) —

Snow — 5 (9536) — 13 (7879) — — 23 (3000)

Warm temperate 1 (1561) 6 (5690) 9 (983) 14 (3525) 17 (289) 20 (3291) 24 (3965)

Arid 2 (17 144) 7 (14 530) 10 (6134) 15 (3838) — 21 (2583) 25 (331)

Equatorial 3 (11 510) 8 (6338) 11 (674) 16 (1493) 18 (97) 22 (11 760) —
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TABLE 4. Correlation between extreme precipitation indices of PERSIANN-CDR and GPCP1DD from 1997 to 2005 [statistically

significant correlations (at 0.05) are in boldface].

CCZ CDD CWD PRCPTOT R10mm R10mmTOT R95pTOT R99pTOT SDII

1 0.957 0.906 0.979 0.949 0.976 0.963 0.932 0.828

2 0.959 0.930 0.998 0.977 0.967 0.986 0.968 0.901

3 0.908 0.865 0.986 0.940 0.927 0.916 0.908 0.860

4 0.809 0.943 0.993 0.980 0.968 0.960 0.893 0.940
5 0.868 0.584 0.762 0.905 0.922 0.770 0.739 0.840

6 0.965 0.896 0.990 0.975 0.981 0.956 0.874 0.879

7 0.958 0.832 0.986 0.923 0.949 0.962 0.927 0.880

8 0.983 0.852 0.991 0.983 0.979 0.916 0.891 0.859
9 0.941 0.894 0.990 0.983 0.981 0.969 0.927 0.878

10 0.960 0.921 0.997 0.977 0.987 0.981 0.949 0.905

11 0.946 0.782 0.979 0.970 0.974 0.739 0.667 0.486

12 0.310 0.567 0.616 0.758 0.772 0.443 0.376 0.995
13 0.718 0.505 0.813 0.899 0.888 0.805 0.764 0.954

14 0.965 0.908 0.991 0.981 0.982 0.935 0.878 0.863

15 0.940 0.866 0.984 0.927 0.920 0.903 0.835 0.773
16 0.959 0.918 0.988 0.982 0.983 0.944 0.891 0.928

17 0.862 0.580 0.750 0.867 0.522 0.261 0.309 0.294

18 0.990 0.953 0.999 0.997 0.994 0.530 0.812 0.745

19 0.987 0.881 0.976 0.949 0.946 0.888 0.758 0.891
20 0.927 0.868 0.989 0.978 0.983 0.960 0.916 0.894

21 0.956 0.867 0.972 0.902 0.913 0.926 0.885 0.877

22 0.973 0.859 0.991 0.984 0.979 0.903 0.769 0.783

23 0.474 0.024 0.165 0.391 0.427 0.232 0.230 0.823
24 0.917 0.318 0.782 0.819 0.789 0.622 0.572 0.681

25 0.885 0.218 0.976 0.912 0.834 0.731 0.577 0.609

TABLE 5. RMSE between extreme precipitation indices of PERSIANN-CDR and GPCP1DD from 1997 to 2005 [statistically significant

(at 0.05) are in boldface].

CCZ CDD CWD PRCPTOT R10mm R10mmTOT R95pTOT R99pTOT SDII

1 14.173 18.605 67.812 5.020 132.820 79.744 30.094 2.088

2 26.498 4.632 17.413 3.196 91.105 63.003 31.064 2.957

3 15.377 21.758 71.422 7.830 239.192 104.386 35.823 2.394

4 31.349 5.808 39.343 3.560 86.293 67.106 31.097 1.820

5 14.849 3.762 172.052 4.607 78.384 68.472 23.609 1.256

6 7.630 11.406 69.670 5.533 184.198 103.239 37.891 3.666
7 22.222 2.681 30.756 2.950 62.062 51.629 26.750 2.437

8 4.686 36.015 116.192 9.100 204.153 147.042 53.695 2.816

9 6.203 2.739 39.956 4.951 157.051 101.637 40.148 3.555

10 9.107 4.423 15.375 3.632 109.439 90.266 46.306 4.312
11 8.343 17.139 57.757 6.105 86.090 116.788 48.674 2.666

12 14.338 4.833 360.785 8.030 112.995 135.925 44.338 1.078

13 5.725 3.879 194.261 8.175 141.499 65.599 21.946 1.305

14 7.170 8.181 57.901 6.234 237.578 124.881 43.173 4.171
15 10.008 4.285 27.638 4.798 102.022 71.968 32.653 2.457

16 5.534 30.784 94.160 6.244 152.446 92.911 31.283 1.867

17 3.700 3.786 235.589 5.768 257.628 146.961 53.695 3.193

18 1.927 15.269 52.022 5.301 117.299 51.268 25.477 1.182

19 11.980 14.975 127.457 7.973 131.319 54.876 23.070 1.183

20 6.511 7.846 74.196 4.627 189.033 113.054 39.113 5.009

21 7.547 7.794 59.429 6.055 137.011 85.827 34.868 2.587
22 5.119 25.985 97.635 5.391 219.330 117.233 41.268 2.489

23 5.524 2.806 268.368 7.428 116.992 92.013 34.249 0.337

24 3.019 4.167 149.939 7.128 144.267 68.580 27.503 1.802

25 3.764 2.825 30.448 5.047 115.954 74.566 32.520 2.337
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TABLE 6. Correlation between extreme precipitation indices of PERSIANN-CDR and TRMM 3B42V7 from 1998 to 2005 [statistically

significant correlations (at 0.05) are in boldface].

CCZ CDD CWD PRCPTOT R10mm R10mmTOT R95pTOT R99pTOT SDII

1 0.938 0.937 0.953 0.916 0.907 0.900 0.856 0.799

2 0.909 0.912 0.988 0.975 0.967 0.980 0.958 0.858

3 0.887 0.866 0.965 0.931 0.910 0.843 0.829 0.854

4 0.779 0.909 0.949 0.908 0.895 0.911 0.870 0.877
5 0.952 0.865 0.979 0.925 0.918 0.972 0.971 0.792

6 0.948 0.822 0.926 0.910 0.917 0.926 0.898 0.866

7 0.920 0.754 0.961 0.919 0.944 0.970 0.962 0.900

8 0.946 0.831 0.945 0.946 0.904 0.837 0.860 0.816
9 0.931 0.839 0.880 0.860 0.887 0.923 0.917 0.889

10 0.924 0.932 0.982 0.972 0.976 0.974 0.947 0.936

11 0.720 0.844 0.946 0.951 0.926 0.804 0.704 0.697

12 0.108 0.368 0.600 0.718 0.708 0.562 0.628 0.914
13 0.929 0.938 0.996 0.983 0.987 0.995 0.992 0.885

14 0.951 0.911 0.980 0.957 0.965 0.974 0.967 0.914

15 0.934 0.917 0.938 0.921 0.931 0.949 0.946 0.863
16 0.871 0.886 0.955 0.953 0.941 0.926 0.906 0.874

17 0.864 0.352 0.590 0.616 0.528 0.410 0.289 0.329

18 0.966 0.985 0.992 0.997 0.989 0.283 0.232 0.834

19 0.921 0.981 0.992 0.978 0.971 0.986 0.977 0.908
20 0.912 0.916 0.960 0.963 0.953 0.946 0.926 0.917

21 0.828 0.881 0.879 0.938 0.946 0.953 0.951 0.916

22 0.940 0.896 0.972 0.967 0.953 0.866 0.758 0.766

23 0.977 0.849 0.992 0.981 0.978 0.988 0.983 0.726
24 0.979 0.825 0.983 0.975 0.969 0.983 0.978 0.768

25 0.934 0.583 0.946 0.949 0.941 0.936 0.879 0.640

TABLE 7. RMSE between extreme precipitation indices of PERSIANN-CDR and TRMM 3B42V7 from 1997 to 2005 [statistically sig-

nificant (at 0.05) are in boldface].

CCZ CDD CWD PRCPTOT R10mm R10mmTOT R95pTOT R99pTOT SDII

1 17.557 10.097 94.493 5.565 144.009 80.877 37.133 1.415

2 31.939 3.846 42.587 1.992 51.242 43.399 27.337 1.956

3 16.455 16.356 112.949 6.119 191.821 134.582 58.711 1.592

4 28.094 4.383 135.741 6.344 107.192 50.621 17.496 0.801

5 7.511 2.991 62.551 3.133 74.335 46.338 20.020 1.457

6 9.498 8.088 208.958 7.926 233.574 117.525 49.392 2.297
7 25.438 2.818 53.651 2.416 45.478 32.674 20.799 1.642

8 10.595 29.126 282.726 16.254 323.276 200.697 87.798 1.990

9 6.123 1.837 122.385 5.038 128.579 84.933 36.341 2.058

10 13.622 3.126 38.473 2.439 65.344 57.916 35.106 2.172

11 32.797 12.219 102.356 9.779 73.479 132.076 73.497 1.789

12 1.298 0.546 41.028 1.001 15.515 16.090 5.526 1.606

13 3.499 2.513 45.751 3.097 114.973 80.478 34.064 2.189

14 7.694 5.074 86.541 4.017 176.936 135.092 58.362 3.264
15 9.818 2.887 63.118 2.894 61.215 44.101 22.984 1.285

16 11.141 22.492 192.695 9.036 218.144 128.578 54.079 1.378

17 6.377 3.694 534.036 20.795 400.006 144.288 55.470 1.878

18 6.573 15.831 239.607 7.709 326.291 242.751 99.768 1.864
19 16.849 10.587 121.956 5.068 61.914 16.505 10.041 0.516

20 10.213 5.494 141.409 5.149 192.865 135.482 59.510 3.497

21 32.656 6.314 160.393 3.174 81.856 57.136 27.627 1.637
22 12.535 18.063 170.495 8.626 203.686 124.303 51.748 1.537

23 1.744 2.034 32.273 1.520 34.667 21.804 9.838 0.661

24 6.301 3.189 93.822 2.832 87.494 58.374 26.895 1.504

25 8.169 3.277 89.222 2.249 51.405 34.529 20.471 1.218
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by sparse station networks, quality of the analysis over grid

boxes where there is at least one reporting gauge inside a

0.258 grid box is reliable. However, it is also noteworthy

that using interpolation techniques to combine point

measurements into a gridded product can introduce

uncertainties in the final gridded product, especially at

remote and ungauged regions where a sufficient number

of gauge stations, if any, is not available. As presented in

Tables 8 and 9, there exist significant agreement be-

tween PERSIANN-CDR and CPC daily gauge data

with low RMSEs and high correlation coefficient values

ranging from 0.886 for SDII to 0.994 for R95pTOT.

The result of the above analyses, tests, and examina-

tions proves that PERSIANN-CDR can be a reliable

data source to serve as the reference dataset for

evaluating climate model’s historical simulations, for a

long-term period and at a global scale.

To better understand why the evaluation of different

climate models’ simulations against a global set of ob-

servations is important, we computed the mean pre-

cipitation total (PRCPTOT) for PERSIANN-CDR and

for the 32 CMIP5 models (Fig. 2) for 1983–2005. One

can find the differences in spatial patterns of the annual

total precipitation in wet days from different CMIP5

models and also from PERSIANN-CDR. Figure 2

indicates different CMIP5 models perform quite dif-

ferently from each other. For example, in Africa, mean

PRCPTOT of BNU-ESM is much larger than that of

EC-EARTH. This means the evaluation of CMIP5

models is of great importance.

For each precipitation index within each CCZ group,

a comparison between the individual 32 CMIP5models

is made to that of the corresponding PERSIANN-

CDR–derived precipitation index. For a given index

with this strategy, each pixel within the CCZ group of

focus will have a sample of that index (mean of indices

from 23 years of data under consideration) for each

model. In other words, a CCZ group composed of 100

pixels will have 100 samples of a given index for each

model. For each model, these samples are plotted

against those obtained from PERSIANN-CDR esti-

mates, and RMSE and correlation are calculated from

the linear fit of these samples. Figure 3 illustrates

a sample of the method we used to compare each

daily extreme index for each CMIP5 model against

PERSIANN-CDR. A correlation of 0.683 and anRMSE

of 352.923mm between PRCPTOT from PERSIANN-

CDR and precipitation from the CNRM-CM5 model

were calculated for CCZ 3 (Africa equatorial) in this

particular example. Relative RMSE was calculated

based on Eq. (3).

Following the analyses illustrated in Fig. 3, correlation

and relative RMSE were calculated for each pre-

cipitation index, for each model, in each of the 25 CCZ

groups against PERSIANN-CDR as the baseline. These

statistical results are collected by climate zone type and

summarized in portrait diagrams (Figs. 4–8; note that

Figs. 5–8 are described in greater detail below). Statistics

for equatorial CCZ groups (Fig. 4) are largely mixed for

correlation and mostly moderate (around 0.5) for rela-

tive RMSE. One standout for this climate zone is

northern South America (CCZ 22), which touts low

relative RMSE and high correlation for nearly all

models for the R10mmTOT index. Similar performance

for CCZ 22 was observed for the SDII index as well.

R95pTOT seems to be doing just as poorly or worse for

all models and CCZs (except 3 and 8) based on Fig. 4.

Among the eight metrics, the correlation coefficient for

R99pTOT index is the worst across almost all the

CMIP5 climate models and all equatorial CCZ groups

except Asia equatorial (CCZ 8). The correlation co-

efficients of R10mmTOT index vary across equatorial

TABLE 9. RMSE between extreme precipitation indices of PERSIANN-CDR and CPC daily gauge data from 1983 to 2005 [statistically

significant (at 0.05) are in boldface].

CCZ CDD CWD PRCPTOT R10mm R10mmTOT R95pTOT R99pTOT SDII

13 3.546 0.958 59.324 1.433 24.313 14.166 6.198 0.778

14 6.359 1.510 90.964 3.433 79.875 47.327 20.106 1.248

15 9.602 1.479 68.639 2.238 41.414 29.603 13.702 0.895

TABLE 8. Correlation between extreme precipitation indices of PERSIANN-CDR and CPC daily gauge data over the CONUS from 1998

to 2005 [statistically significant correlations (at 0.05) are in boldface].

CCZ CDD CWD PRCPTOT R10mm R10mmTOT R95pTOT R99pTOT SDII

13 0.983 0.964 0.990 0.988 0.988 0.994 0.993 0.954

14 0.983 0.962 0.988 0.981 0.981 0.990 0.988 0.905

15 0.977 0.944 0.953 0.922 0.923 0.974 0.973 0.886
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FIG. 2. Mean PRCPTOT (mm) for PERSIANN-CDR and 32 CMIP5 models from 1983 to 2005.
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CCZ groups from lower than 20.5 (CCZ 16) to larger

than 0.9 (CCZ 20), and so does R95pTOT index.

Arid CCZ groups (Fig. 5) have high correlations

for most models and across all indices, particularly

PRCPTOT and CDD. The correlations between daily

extreme indices (e.g., SDII and CWD indices) from

CMIP5 models 10 (CanESM2), 16 (GISS-E2-H), and 17

(GISS-E2-R) and that from PERSIANN-CDR are rel-

atively worse than the other models. In terms of the

RMSE, markedly poor performance in most models

appears in PRCPTOT for CCZ 15 (North America

arid), especially CMIP5 models 5, 6, 7, 20, and 21. Sim-

ilar poor performance in most models for SDII, CWD,

and R10mmTOT appears in CCZ 25 (Europe arid).

FIG. 3. (right) Correlation between (left) PERSIANN-CDR PRCPTOT (mm) and (center) CNRM-CM5 PRCPTOT (mm)

for CCZ 3.

FIG. 4. (left) Correlation and (right) relative RMSE for precipitation indices in equatorial CCZ groups [statistically

insignificant correlations (at 0.05) in hatched boxes].
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Among the eight indices, CWD and CDD perform

better than the others in terms of correlation efficient, in

which R10mm shows the worst performance. In terms

of relative RMSE, R99pTOT behaves the best, while

R10mmTOT performs the worst in terms of RMSE.

Warm temperate CCZ groups (Fig. 6) have fairly high

(;0.5–0.9) correlation and low relative RMSE (;0.2,

except for models 16 and 17). The results show that al-

most all the CMIP5 climate models depict high

correlation coefficients across all the daily extreme

precipitation indices, with the exception of R10mmTOT

fewmodels [e.g., model 12 (FGOALS-g2)].With respect

to the error between climate models and PERSIANN-

CDR, CMIP5 models 16 and 17 exhibit relatively worse

performance than the other models. These two models

have comparably high values over CCZ 6, 9, and 25 in

SDII. Similar to arid CCZ groups, CDD performs better

than the others in terms of correlation efficient and

R99pTOT behaves the best in terms of RMSE.

Cold regions (snow and polar in Figs. 7 and 8, re-

spectively) generally show low relative RMSE com-

pared to the other three climate zone varieties. Themain

exception occurs over CCZ 23 (Europe snow) for

R10mmTOT index, where almost all CMIP5 models

show poor performance. With respect to the correlation

coefficients between different models and PERSIANN-

CDR precipitation, generally high values are observed

for intensity (SDII), frequency (R10mm), and duration

(CWD, CDD) indices.With respect to the daily extreme

total indices over the snow CCZ groups, almost all

CMIP5 models depict poor performances in R95pTOT

and R99pTOT with low correlation coefficients (;0.2).

RMSE is low for almost all models for R10mm in the

polar groups according to Fig. 8. These climate zones

show relatively high correlations for most models in all

indices except R95pTOT and R99pTOT.

Regarding the performance of CMIP5 models in

different climate zones, it can be seen that the perfor-

mance of arid zones is the best in terms of correlation

coefficient. However, snow zones exhibit outstanding

performance in terms of relative root-mean-square

error. This may be because, like the arid zones, both

models and PERSIANN-CDR agree on small pre-

cipitation amounts overall for snow zones (Fig. 2). With

less precipitation to capture, it becomes easier to

obtain a lower RMSE. Unlike arid zones, the snow

regions have an even greater advantage in that the little

precipitation that is received is less likely to be in the

form of convective events with intensities that may be

more difficult to capture. This gives the snow zones a

FIG. 5. As in Fig. 4, but for arid CCZ groups.
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slight edge over the arid regions in terms of RMSE and

is reflected in Figs. 5 and 7.

Because of the choice of dividing study regions into

CCZ groups, the analysis incorporates areas of vary-

ing sizes (see Table 2). One of the largest CCZ groups

(22) was divided into uniform 68 3 68 areas (roughly
the size of the smallest CCZ groups) to provide a

quantitative sample of the uncertainty resulting from

this division choice. After discarding subareas smaller

than the smallest CCZ group (18), which appear along

the irregular boundaries of CCZ 22, the analysis

was performed on 33 subareas (Figs. 9, 10). Some

of the indices (especially PRCPTOT, R10mm, and

R99pTOT) are only slightly affected by a large spatial

extent difference, as the statistics for the 33 subareas

cluster tightly around the complete CCZ 22 CORR

and relative RMSE values for most CMIP5 models.

The models examined exhibit a degradation in per-

formance in SDII CORR and in both CORR and

relative RMSE for R10mmTOT when transitioning

from a large analysis area to small areas. Other indices

exhibit mixed levels of representation of CCZ 22

by the 33 subareas. R95pTOT, for example, shows

that the subarea populations characterize the large

CCZ 22 CORR quite well, but consistently out-

perform the large area in terms of RMSE. However,

whether improving, degrading, or not changing perfor-

mance of CORR and relative RMSE, the intermodel

performance is broadly preserved as the spatial scale

is refined.

5. Summary and discussion

This study provides a first overview of the perfor-

mance of all CMIP5 models in simulating climate daily

extreme indices in comparison to PERSIANN-CDR

precipitation estimates with high resolution on daily and

nearly global scales. The set of 8 indices is calculated for

32 CMIP5 models over 25 CCZ groups.

We use PERSIANN-CDR as the reference data for

CMIP5 model evaluation on the assumption that it is

accurate enough for the study. It is acknowledged that

satellite-based precipitation estimates are subject to

uncertainties, for example, systematic errors. However,

the assumption is based on the fact that PERSIANN-

CDR has been tested for its performance for different

applications against ground-truth observational data

and also in comparison to other satellite-based products,

as explained in section 2. The use of multiple pre-

cipitation estimates does not reduce the uncertainty;

rather, it shows that there is uncertainty in all estimates

and tries to quantify that uncertainty. The quantitative

FIG. 6. As in Fig. 4, but for warm temperate CCZ groups.
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FIG. 7. As in Fig. 4, but for snow CCZ groups.

FIG. 8. As in Fig. 4, but for polar CCZ groups.
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comparisons and analysis between PERSIANN-CDR

and GPCP1DD, TRMM 3B42V7, and U.S. CPC daily

gauge data products proved that PERSIANN-CDR is

effective as a reference dataset used in evaluating the

performance of CMIP5 models. PERSIANN-CDR has

its priority for climate studies with its long period (from

1983 to near present), near-global coverage, and high

resolution. It is a useful dataset for addressing various

key climatological and hydrological research questions

that require longer and finer-resolution data than pre-

viously available.

This study examines performance of climate models

based on their subdivision into climate groups and

continents. These CCZ groups are a natural division

unit for evaluation of climate models since the CCZ

groups are defined by climate-scale precipitation and

temperature and the primary outputs for the climate

models are also precipitation and temperature. Such a

grouping is useful not only for users of climate model

output who would like to leverage the strengths of the

top-performing models, but also for climate model de-

velopers. Through this categorization, developers get a

more complete picture of how each model performs in a

specific environment, which may then be related to how

well a given model is able to capture certain processes

unique to that environment. Having insight on the

strengths and weaknesses of a given model will allow

developers to focus their efforts where they are most

needed. For example, it is obvious that the GISS models

perform poorly in polar regions and many others per-

form the worst in equatorial regions.

The performance of percentile indices (R95pTOT and

R99pTOT) indicates that all CMIP5 models exhibit a

deficit in reproducing observed precipitation character-

istics in daily extremes over snow and polar CCZ groups.

The inconsistency originates from the fact that the

PERSIANN-CDR algorithm is designed to estimate

liquid precipitation while these regions are mostly snowy

regions. It indicates that CMIP5 models’ precipitation

estimates capture the tendency (CORR) and amount

(RMSE) of PERSIANN-CDR observations over arid

CCZ groups better than the other CCZ groups. However,

there is an exception, which is the snow CCZ group, over

which CWDandR10mmhave better correlation than the

other CCZ groups. This indicates CMIP5 models have

the capability to capture the frequency and duration of

wet days. The persistence of these errors in all 32 evalu-

ated CMIP5 simulations indicates the models have a

FIG. 9. Box-and-whisker plots of (top) CORR and (bottom) relative RMSE values for

subregions in CCZ 22. Each plot is a grouping of all CORR or relative RMSE values for all

models and all 33 subareas in CCZ 22. Red lines indicatemeans of subarea samples, red crosses

indicate outliers, and black stars indicate corresponding statistics (averaged over the 33

models) of the entire CCZ 22 region.
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general deficiency in simulating the daily extreme upper

tail of the precipitation distribution.

The inconsistent correlation performance across vari-

ous models and precipitation indices within the equato-

rial and, to a slightly lesser extent, warm temperate CCZ

groups is not entirely surprising given the more complex

precipitation patterns in these areas. Similarly, these two

categories of climate zones tend to show higher RMSE

values for most indices compared to the other three cli-

mate zone categories. This is somewhat of an artifact of

normalizing all RMSE values globally. Since zero pre-

cipitation days are effectively removed from some indices

(R99pTOT, R95pTOT, R10mmTOT, and PRCPTOT)

and dominate others (SDII, R10mm,CWD, andCDD) in

the comparably drier arid, polar, and snow areas, these

regions have the advantage of capturing the more sim-

plistic dry tendencies. On this note, the result that the arid

regions had the highest correlation and lowest RMSE out

of the climate zone types is expected.

A sample investigation into the role of analyzing

different-sized regions reveals that larger areas may

have an overall advantage in terms of SDII CORR and

R10mmTOT CORR and relative RMSE, and that

PRCPTOT and R99pTOT CORR and relative RMSE

and R95pTOT CORR are unaffected. Comparisons be-

tween models reveal that a rank in model performance

according to the metrics used in this study is largely

preserved through the spatial-scale change.

As shown in the initial part of the analysis,

PERSIANN-CDR in general depicts high correlation

coefficients and lowRMSE across all the daily extreme

indices and climate zones (with few exceptions), when

compared against three precipitation data products,

GPCP1DD, TRMM 3B42V7, and CPC daily gauge

data. Therefore, one can conclude that PERSIANN-

CDR validates well against gauge-based and other

high-resolution satellite-based precipitation products

in reproducing the daily extreme precipitation indices

and can be used for model evaluation. Despite this,

and as is the case with all the satellite-based products,

we acknowledge that the uncertainties in PERSIANN-

CDR can also contribute to results we are deriving;

however, given the favorable results from the afore-

mentioned evaluation of PERSIANN-CDR, it does

not seem to be significant.

This study provides insightful suggestions for CMIP5

model selection for hydrometeorological and climate

studies. For instance, one can use the correlation and/or

RMSE criteria in Fig. 6 to select a number of models

among the 32 CMIP5 models for southeastern China

(CCZ 6) based on one or some of the eight precipitation

indices. If the selection is based on the SDII with the

FIG. 10. Box-and-whisker plots of (top) CORR and (bottom) relative RMSE values for

subregions in CCZ 22. Each plot is a grouping of all CORR or relative RMSE values for all

indices and all 33 subareas in CCZ 22. Red lines indicate means of subarea samples, red crosses

indicate outliers, and black stars indicate corresponding statistics (averaged over the eight

indices) of the entire CCZ 22 region.
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highest correlation, HadGEM2-ES, EC-EARTH, and

MIROC5 are the three best choices, respectively. Such

model selection can be adapted to any region globally

depending on the phenomenon of interest and can be

combined with user-specific criteria.

As some previous works (Kim et al. 2012; Fang and Li

2016) suggested, the performance of the CMIP5 models

in simulating precipitation can be improved with some

model averaging techniques. However, it is unreason-

able to utilize all the CMIP5 models in some techniques

(e.g., Bayesianmodel averaging). This study can provide

good suggestions for hydrometeorology researchers

to select those CMIP5 models that perform well over

the specific region to do the multimodel ensemble sim-

ulations. Besides, this study informs the model de-

velopers of the strengths and weakness of their models.

At the same time, the study provides insights on which

models should be chosen when concentrating on the

daily extremes of precipitation and which models

should be selected when emphasizing the total amount

of precipitation.

Acknowledgments. This research was partially sup-

ported by the Cooperative Institute for Climate and

Satellites (CICS) program (NOAA Prime Award

NA14NES4320003, Subaward 2014-2913-03) for

OHD-NWS student fellowship, the Army Research

Office (AwardW911NF-11-1-0422), National Science

Foundation (NSF Award 1331915), and Department

of Energy (DOE Prime Award DE-IA0000018).

REFERENCES

Adler, R. F., and Coauthors, 2003: The version-2 Global Pre-

cipitation Climatology Project (GPCP) monthly precipitation

analysis (1979–present). J. Hydrometeor., 4, 1147–1167,

doi:10.1175/1525-7541(2003)004,1147:TVGPCP.2.0.CO;2.

Ashouri, H., K. Hsu, S. Sorooshian, D.K. Braithwaite, K.R. Knapp,

L.D. Cecil, B.R. Nelson, and O.P. Prat, 2015: PERSIANN-

CDR:Daily precipitation climate data record frommultisatellite

observations for hydrological and climate studies. Bull. Amer.

Meteor. Soc., 96, 69–83, doi:10.1175/BAMS-D-13-00068.1.

——, P. Nguyen, A. Thorstensen, K. Hsu, S. Sorooshian, and

D. Braithwaite, 2016a: Assessing the efficacy of high-

resolution satellite-based PERSIANN-CDR precipitation

product in simulating streamflow. J. Hydrometeor., 17, 2061–

2076, doi:10.1175/JHM-D-15-0192.1.

——, S. Sorooshian, K. Hsu, M. G. Bosilovich, J. Lee, and M. F.

Wehner, 2016b: Evaluation ofNASA’sMERRAprecipitation

product in reproducing the observed trend and distribution

of extreme precipitation events in the United States.

J. Hydrometeor., 17, 693–711, doi:10.1175/JHM-D-15-0097.1.

Bosilovich, M. G., J. Chen, F. R. Robertson, and R. F. Adler, 2008:

Evaluation of global precipitation in reanalyses. J. Appl. Meteor.

Climatol., 47, 2279–2299, doi:10.1175/2008JAMC1921.1.

Burroughs, W., 2003: Climate: Into the 21st Century. Cambridge

University Press, 240 pp.

Casse, C., and M. Gosset, 2015: Analysis of hydrological changes

and flood increase in Niamey based on the PERSIANN-CDR

satellite rainfall estimate and hydrological simulations over

the 1983–2013 period. Proc. IAHS, 370, 117–123, doi:10.5194/

piahs-370-117-2015.

Fang, M., and X. Li, 2016: Application of Bayesian model aver-

aging in the reconstruction of past climate change using

PMIP3/CMIP5 multi-model ensemble simulations. J. Climate,

29, 175–189, doi:10.1175/JCLI-D-14-00752.1.

Flato, G., and Coauthors, 2013: Evaluation of climate models.

Climate Change 2013: The Physical Science Basis, T. F. Stocker

et al., Eds., Cambridge University Press, 741–866.

Gaetani, M., and E. Mohino, 2013: Decadal prediction of the

Sahelian precipitation in CMIP5 simulations. J. Climate, 26,

7708–7719, doi:10.1175/JCLI-D-12-00635.1.

Guo, H., S. Chen, A. Bao, J. Hu, A. S. Gebregiorgis, X. Xue, and

X. Zhang, 2015: Inter-comparison of high-resolution satellite

precipitation products over central Asia. Remote Sens., 7,

7181–7211, doi:10.3390/rs70607181.

Held, I. M., 2005: The gap between simulation and understanding

in climate modeling. Bull. Amer. Meteor. Soc., 86, 1609–1614,

doi:10.1175/BAMS-86-11-1609.

Hsu, K., X. Gao, S. Sorooshian, and H. V. Gupta, 1997: Pre-

cipitation Estimation from Remotely Sensed Information

Using Artificial Neural Networks. J. Appl. Meteor. Climatol.,

36, 1176–1190, doi:10.1175/1520-0450(1997)036,1176:

PEFRSI.2.0.CO;2.

Huffman, G. J., R. F. Adler, M. M. Morrissey, D. T. Bolvin,

S. Curtis, R. Joyce, B. McGavock, and J. Susskind, 2001:

Global precipitation at one-degree daily resolution from

multisatellite observations. J. Hydrometeor., 2, 36–50,

doi:10.1175/1525-7541(2001)002,0036:GPAODD.2.0.CO;2.

——, and Coauthors, 2007: The TRMM Multisatellite Pre-

cipitation Analysis (TMPA): Quasi-global, multiyear,

combined-sensor precipitation estimates at fine scales.

J. Hydrometeor., 8, 38–55, doi:10.1175/JHM560.1.

IPCC, 2013: Climate Change 2013: The Physical Science

Basis. Cambridge University Press, 1535 pp., doi:10.1017/

CBO9781107415324.

Jiang, Z., J. Song, L. Li, W. Chen, Z. Wang, and J. Wang, 2012:

Extreme climate events in China: IPCC-AR4 model evalua-

tion and projection. Climatic Change, 110, 385–401,

doi:10.1007/s10584-011-0090-0.

Joyce, R. J., J. E. Janowiak, P. A. Arkin, and P. Xie, 2004:

CMORPH: A method that produces global precipitation es-

timates from passive microwave and infrared data at high

spatial and temporal resolution. J. Hydrometeor., 5, 487–503,

doi:10.1175/1525-7541(2004)005,0487:CAMTPG.2.0.CO;2.

Katiraie-Boroujerdy, P.-S., H. Ashouri, K. Hsu, and S. Sorooshian,

2017: Trends of precipitation extreme indices over a sub-

tropical semi-arid area using PERSIANN-CDR. Theor. Appl.

Climatol., doi:10.1007/s00704-016-1884-9, in press.

Kim, H. M., P. J. Webster, and J. A. Curry, 2012: Evaluation

of short-term climate change prediction in multi-model

CMIP5 decadal hindcasts. Geophys. Res. Lett., 39, L10701,

doi:10.1029/2012GL051644.

Knapp, K. R., 2008: Scientific data stewardship of International

Satellite Cloud Climatology Project B1 global geostationary

observations. J. Appl. Remote Sens., 2, 023548, doi:10.1117/

1.3043461.

Liu, Z. Y., and Coauthors, 2014: Chinese cave records and the East

Asia summermonsoon.Quat. Sci. Rev., 83, 115–128, doi:10.1016/

j.quascirev.2013.10.021.

SEPTEMBER 2017 NGUYEN ET AL . 2329

Unauthenticated | Downloaded 12/28/22 08:36 PM UTC

http://dx.doi.org/10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2
http://dx.doi.org/10.1175/BAMS-D-13-00068.1
http://dx.doi.org/10.1175/JHM-D-15-0192.1
http://dx.doi.org/10.1175/JHM-D-15-0097.1
http://dx.doi.org/10.1175/2008JAMC1921.1
http://dx.doi.org/10.5194/piahs-370-117-2015
http://dx.doi.org/10.5194/piahs-370-117-2015
http://dx.doi.org/10.1175/JCLI-D-14-00752.1
http://dx.doi.org/10.1175/JCLI-D-12-00635.1
http://dx.doi.org/10.3390/rs70607181
http://dx.doi.org/10.1175/BAMS-86-11-1609
http://dx.doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
http://dx.doi.org/10.1175/1520-0450(1997)036<1176:PEFRSI>2.0.CO;2
http://dx.doi.org/10.1175/1525-7541(2001)002<0036:GPAODD>2.0.CO;2
http://dx.doi.org/10.1175/JHM560.1
http://dx.doi.org/10.1017/CBO9781107415324
http://dx.doi.org/10.1017/CBO9781107415324
http://dx.doi.org/10.1007/s10584-011-0090-0
http://dx.doi.org/10.1175/1525-7541(2004)005<0487:CAMTPG>2.0.CO;2
http://dx.doi.org/10.1007/s00704-016-1884-9
http://dx.doi.org/10.1029/2012GL051644
http://dx.doi.org/10.1117/1.3043461
http://dx.doi.org/10.1117/1.3043461
http://dx.doi.org/10.1016/j.quascirev.2013.10.021
http://dx.doi.org/10.1016/j.quascirev.2013.10.021


Luchetti, N. T., J. R. Sutton, E. E. Wright, M. C. Kruk, and J. J.

Marra, 2016: When El Niño rages: How satellite data can help

water-stressed islands. Bull. Amer. Meteor. Soc., 97, 2249–

2255, doi:10.1175/BAMS-D-15-00219.1.

Mehran, A., A. AghaKouchak, and T. J. Phillips, 2014: Evalu-

ation of CMIP5 continental precipitation simulations

relative to satellite-based gauge-adjusted observations.

J. Geophys. Res. Atmos., 119, 1695–1707, doi:10.1002/

2013JD021152.

Miao, C., H. Ashouri, K. Hsu, S. Sorooshian, and Q. Duan, 2015:

Evaluation of the PERSIANN-CDR daily rainfall estimates

in capturing the behavior of extreme precipitation events

over China. J. Hydrometeor., 16, 1387–1396, doi:10.1175/

JHM-D-14-0174.1.

Neelin, J. D., M. Münnich, H. Su, J. E. Meyerson, and C. E.

Holloway, 2006: Tropical drying trends in global warming

models and observations. Proc. Natl. Acad. Sci. USA, 103,

6110–6115, doi:10.1073/pnas.0601798103.

Nguyen, P., and Coauthors, 2017: Exploring trends through

‘‘RainSphere’’: Research data transformed into public

knowledge.Bull. Amer.Meteor. Soc., 98, 653–658, doi:10.1175/

BAMS-D-16-0036.1.

Peterson, T. C., P. A. Stott, and S. Herring, Eds., 2012: Ex-

plaining extreme events of 2011 from a climate perspective.

Bull. Amer. Meteor. Soc., 93, 1041–1067, doi:10.1175/

BAMS-D-12-00021.1.

Reichler, T., and J. Kim, 2008: How well do coupled models sim-

ulate today’s clime? Bull. Amer. Meteor. Soc., 89, 303–311,

doi:10.1175/BAMS-89-3-303.

Rossow, W. B., A. Mekonnen, C. Pearl, and W. Goncalves, 2013:

Tropical precipitation extremes. J. Climate, 26, 1457–1466,

doi:10.1175/JCLI-D-11-00725.1.

Rubel, F., and M. Kottek, 2010: Observed and projected climate

shifts 1901–2100 depicted by world maps of the Köppen–
Geiger climate classification. Meteor. Z., 19, 135–141,

doi:10.1127/0941-2948/2010/0430.

Sillmann, J., V. V. Kharin, X. Zhang, F. W. Zwiers, and

D. Bronaugh, 2013: Climate extremes indices in the CMIP5

multimodel ensemble: Part 1. Model evaluation in the present

climate. J. Geophys. Res. Atmos., 118, 1716–1733, doi:10.1002/
jgrd.50203.

Solmon, F., V. S. Nair, and M. Mallet, 2015: Increasing Arabian

dust activity and the Indian summer monsoon. Atmos. Chem.

Phys., 15, 8051–8064, doi:10.5194/acp-15-8051-2015.
Sorooshian, S., K. Hsu, X. Gao, H. V. Gupta, B. Imam, and

D. Braithwaite, 2000: Evaluation of PERSIANN system

satellite–based estimates of tropical rainfall. Bull. Amer.

Meteor. Soc., 81, 2035–2046, doi:10.1175/1520-0477(2000)

081,2035:EOPSSE.2.3.CO;2.

Tan, M. L., A. L. Ibrahim, Z. Duan, A. P. Cracknell, and

V. Chaplot, 2015: Evaluation of six high-resolution satellite

and ground-based precipitation products over Malaysia.

Remote Sens., 7, 1504–1528, doi:10.3390/rs70201504.

Taylor, K. E., R. J. Stouffer, andG.A.Meehl, 2012:An overview of

CMIP5 and the experiment design. Bull. Amer. Meteor. Soc.,

93, 485–498, doi:10.1175/BAMS-D-11-00094.1.

van der Wiel, K., and Coauthors, 2016: The resolution de-

pendence of contiguous U.S. precipitation extremes in

response to CO2 forcing. J. Climate, 29, 7991–8012,

doi:10.1175/JCLI-D-16-0307.1.

Wuebbles, D. J., and Coauthors, 2014: CMIP5 climate model

analyses: Climate extremes in the United States. Bull. Amer.

Meteor. Soc., 95, 571–583, doi:10.1175/BAMS-D-12-00172.1.

Xie, P. P., A. Yatagai, M. Y. Chen, T. Hayasaka, Y. Fukushima,

C. M. Liu, and S. Yang, 2007: A gauge-based analysis of daily

precipitation over East Asia. J. Hydrometeor., 8, 607–626,
doi:10.1175/JHM583.1.

Yang, X., B. Yong, H. Yong, S. Chen, and X. Zhang, 2016: Error

analysis of multi-satellite precipitation estimates with an in-

dependent raingauge observation network over a medium-

sized humid basin. Hydrol. Sci. J., 61, 1813–1830, doi:10.1080/

02626667.2015.1040020.

2330 JOURNAL OF HYDROMETEOROLOGY VOLUME 18

Unauthenticated | Downloaded 12/28/22 08:36 PM UTC

http://dx.doi.org/10.1175/BAMS-D-15-00219.1
http://dx.doi.org/10.1002/2013JD021152
http://dx.doi.org/10.1002/2013JD021152
http://dx.doi.org/10.1175/JHM-D-14-0174.1
http://dx.doi.org/10.1175/JHM-D-14-0174.1
http://dx.doi.org/10.1073/pnas.0601798103
http://dx.doi.org/10.1175/BAMS-D-16-0036.1
http://dx.doi.org/10.1175/BAMS-D-16-0036.1
http://dx.doi.org/10.1175/BAMS-D-12-00021.1
http://dx.doi.org/10.1175/BAMS-D-12-00021.1
http://dx.doi.org/10.1175/BAMS-89-3-303
http://dx.doi.org/10.1175/JCLI-D-11-00725.1
http://dx.doi.org/10.1127/0941-2948/2010/0430
http://dx.doi.org/10.1002/jgrd.50203
http://dx.doi.org/10.1002/jgrd.50203
http://dx.doi.org/10.5194/acp-15-8051-2015
http://dx.doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
http://dx.doi.org/10.1175/1520-0477(2000)081<2035:EOPSSE>2.3.CO;2
http://dx.doi.org/10.3390/rs70201504
http://dx.doi.org/10.1175/BAMS-D-11-00094.1
http://dx.doi.org/10.1175/JCLI-D-16-0307.1
http://dx.doi.org/10.1175/BAMS-D-12-00172.1
http://dx.doi.org/10.1175/JHM583.1
http://dx.doi.org/10.1080/02626667.2015.1040020
http://dx.doi.org/10.1080/02626667.2015.1040020

